
24/06/15 19:02Table of Infinite Regular Polyhedra

Page 1 of 4http://www.superliminal.com/geometry/infinite/infinite.htm

 

Infinite Regular Polyhedra

Polyhedra are surfaces composed of polygons such that each edge is adjacent to two polygons (or
"faces"). Regular polyhedra are those that are composed of only one type of regular polygon (regular
polygons have all edge lengths and angles equal). Polyhedra that close on themselves have a finite number
of faces, but it's possible to describe polyhedra constructions that are infinite. In other words, it would take
an infinite number of polygons to complete such a figure which would then fill all of space with a
latticework. Of course an infinite physical model cannot be completely constructed, but large enough
sections can be built to show their geometry and prove their existence. Here are some 2D and 3D
photographs of some physical models.

The drawing above (courtesy of Steve Dutch) show portions of one such figure with identical vertices
each surrounded by six squares. Click the links in the table below for images and 3D models of several
more. The famous mathematician H.S.M. Coxeter calls these figures "skew polyhedrons" while J. Richard
Gott, III calls them "Pseudopolyhedrons". I'll call them "Infinite Polyhedra", and when they are composed
only of regular polygons, I'll call them "Infinite Regular Polyhedra" or simply "IRPs". Regular polyhedra
are often represented with a notation called Schläfli symbols which consist of two numbers between curly
braces. The first number is the number of sides on each polygon, and the second is the number of such
polygons surrounding each vertex (i.e. corner). For example, {4,3} is the cube because each vertex is
surrounded by three squares. It's perfectly natural to apply this notation to infinite polyhedra too.

At first it appears that finite and infinite polyhedra are very different sorts of beasts but it turns out that
mathematically they can be looked at in very much the same way through the concept of surface "genus".
The powerful idea of applying the concept of genus to IRPs may not be new, but the following description
and table was recently developed by Lasse Winquist of Sweden.

The genus of a surface is a measure of it's complexity. Any surface that can be smoothly deformed into a
simple sphere has a genus of 0. The simplest shape that a coffee cup can be deformed into is a torus (a
doughnut shape) which has genus 1. A piece of swiss cheese with many tunnels through it has a genus
equal to the number of tunnels.

http://www.superliminal.com/geometry/infinite/stereo/index.htm
mailto:%20lasse.winquist@sblvaccin.se
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Euler first discovered the formula F-E+V = 2-2g which relates the number of faces, edges and
vertices of a polyhedron to it's genus. At first glance this formula seems to say that the genus of any
infinite polyhedron must also be infinite. That even seems natural since IRPs have an infinite number of
tunnels. This view is misleading however. A much more powerful application of Euler's formula to
infinite polyhedra is to apply it to a minimal repeat unit which can be used to create each IRP. Repeat
units are familiar to crystallographers who describe different crystal structures in terms of small clusters
of atoms which are arrayed in different ways in three dimensions much like the ways bricks can be
arrayed in two dimensions. This method is also useful and natural when describing infinite polyhedra.
Imagine a minimal repeat unit of an IRP which has the topology of the following figure:

If the polygons of that structure are copied and connected to each other according to the arrows, an infinite
checkerboard IRP will result. Imagine such a polyhedral repeat unit from an IRP with with Schläfli
symbol {p,q}. If we count each face of a repeat unit of the figure above to be the same as it's twin on

each of the other repeat units (and likewise for each edge and vertex), we can compute E = Fp/2 and

V = Fp/q for that repeat unit. Plugging these values directly into Euler's formula gives 2-2g= F-
Fp/2+Fp/q = -F/2q(pq-2p-2q) which implies that F = 4q(g-1)/(pq-2p-2q).

Any IRP with the topology of the figure above will satisfy these equations only when g=2. Now imagine a
repeat unit with the topology of the figure below:
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Such a polyhedral repeat unit satisfies the equations when g=3. In general, the genus of an IRP is the same
as the number of neck pairs that are connected by a repeat unit that generates the infinite figure. The
complexity of an IRP is directly related to the complexity of the way repeat units are connected. The
connection of this concept of genus to the genus of finite polyhedra is completely natural. If you imagine
connecting the neck pairs of an IRP repeat unit with tubes, you will get a finite polyhedron with the same
genus. So in this way both finite and infinite polyhedra can be treated identically except for the spaces in
which they're embedded. Finite models exist in the normal infinite 3D space whereas infinite models can
be thought of as existing in finite spaces which repeat in three dimensions.

Cosmologists even argue whether the universe itself is really infinite or whether space repeats itself in
exactly this way. See the cover article in Scientific American's April 1999 issue for an excellent
description of this issue. If this is true, then space itself may have exactly the same shape as is needed to
describe some IRPs. Another good reference is a web page by one of the authors of that article which he
devoted to describing such tiled spaces via familiar games you can play in such tiled spaces.

Perhaps the simplist IRP with genus 3 can be generated from a packing of cubes. Click the following link
to view models and a description of that {4,6}. For an example of an infinite polyhedron of very high
genus, click the following link to view one with genus = 6 which can be generated from a packing of
rhombic dodecahedra.

The following table lists the number of faces in the repeat units of regular polyhedra. The blue cells
represent the finite regular polyhedra, and the purple cells represent infinite regular polyhedra. The yellow
cells represent the flat plane tilings which are a sort of degenerate class of polyhedra which sit exactly on
the border of the finite and infinite regular polyhedra.

The underlined table entries are links to pages that contain photos and descriptions of individual IRPs as
well as links to VRML models of those IRP's which can be interactively rotated, scaled, and tiled in three
dimensions. The interactive tiling ability was programmed by Vladimir Bulatov. It is currently known to
work with the free Cortona VRML browser plug-in from Parallel Graphics. 
  
 

Per Vertex Triangles Squares Pentagons Hexagons

http://cosmos.phy.tufts.edu/%7Ezirbel/ast21/sciam/IsSpaceFinite.pdf
http://www.geometrygames.org/TorusGames
http://www.superliminal.com/geometry/infinite/4_6a.htm
http://www.superliminal.com/geometry/infinite/runcrhomb.htm
http://bulatov.org/
http://www.parallelgraphics.com/products/cortona/
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3 4 6 12  

4 8   8

5 20 10, 30, 30 8  

6  12, 12, 18  4

7  56    

8  16, 32, 32    

9 24, 24, 36    

12 24, 24    
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